FastQC introduction

- FastQC tutorial: <u>https://www.youtube.com/watch?v=bz93ReOv87Y</u>
- Help on each function in FastQC:
- http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/

What is the quality of my reads?

Read length

Will be important in setting maximum k-mer size value for assembly

Quality encoding type

Important for quality trimming software

% GC

High GC organisms don't tend to assemble well and may have an uneven read coverage distribution.

Total number of reads

Gives you an idea of coverage..

Dips in quality near the beginning, middle or end of the reads

Determines possible trimming/cleanup methods and parameters and may indicate technical problems with the sequencing process/machine run.

Presence of highly recurring k-mers

May point to contamination of reads with barcodes, adapter sequences etc.

Presence of large numbers of N's in reads

May point to poor quality sequencing run. You need to trim these reads to remove N's.

H1_CGATGT_L005_R1_001.fastq FastQC Report FastQC Report Thu 9 Jun 2016 H1_CGATGT_L005_R1_001.fastq

Summary

Per base sequence quality

Per tile sequence quality

- Heatmap of read quality at a given position in sequence for each tile in a Illumina flowcell
- Colours displayed from cold (blue) to hot (red)
- Warning issued if any tile has mean Phred score 2 less than flowcell average for that position
- Error issued if any tile has Phred score 5 less than flowcell average at that position

Per sequence quality scores

- Plot of <u>average Q</u> value for a sequence against number of sequences with the same average Q
- Distribution should have pronounced peak at the right, with few if any small bumps in the central/low Q positions

Per base sequence content

Sequence content across all bases

- Plot of % content for each of the 4 nucleotides G, A, T and C
- The % composition for each should be fairly constant for the sequence length
- If there is a significant deviation at one or more positions, it may indicate a significant library bias, or problem with the synthesis reaction

Per sequence GC content

GC distribution over all sequences

- Plot of the average GC% against number of sequences
- A theoretical, normal distribution is calculated, based on the observed GC% of all the sequences
- The practical distribution and normal distribution should be very similar
- The appearance of "bumps" to the side of the distribution may indicate adapter dimers or another library bias
- A warning is given if the sum of the deviations represent >15% of the reads
- A failure is given if the sum of the deviations represent
 >30% of the reads

Per base N content

- % of uncalled bases (N) at every position in the sequence
- Indication of sequence quality and base-calling specificity
- Warning issued if N%> 5 at any position
- Failure if N% > 20 at any position

Sequence Length Distribution

- Distribution of sequence lengths in whole dataset
- For Illumina, all sequences should be the same length
- After trimming (see trim_galore, later), this distribution may change

Sequence Duplication Levels

- This plot shown a bin distribution, with an the number of sequences in each bin (blue line)
- Over-representation of sequences may to due to high sequence coverage, or contamination with lowcomplexity sequences
- Only the first 50 nt of the first 100,000 sequences in a file are analyzed
- The red line shown the "deduplicated" sequences – each duplicated sequence is counted only once in each bin
- The percentage of sequence remaining after "de-duplication" is given
- Warning: non-unique sequences make up >20% of total
- Error: non-unique sequences make up >50% of total

Overrepresented sequences

- The first 100,000 sequences in a file are scanned against the whole file
- A fit over 20 nt with at most one mismatch is a hit
- Hits are screened against a database of common contaminants, including adapter and primer sequences common for the given sequencing platform
- This identified contaminating sequences in the dataset can be removed by filtering the dataset
- Warning: Any one sequence representing >0.1% of dataset
- Error: Any one sequence representing >1% of dataset

Kmer Content

- The occurrence of each possible k-mer (7-mer) is determined at every position for 2% of the dataset
- The likelihood (p) of finding a specific k-mer at each position is calculated with a binomial distribution
- Top 6 over-represented k-mers shown
- Over-represented sub-sequences are not identified in duplicated sequences or per base content analysis
- Over-represented k-mers may be due to amplification of random primer sub-population